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SERIOUSLY!



  

Secret Agenda

I will try to convince you Elasticsearch performance 

and caching are indeed difficult subjects. So that I can 

justify our complex caching setup.
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Who uses search anyway?

Metrics for 1 out
of 10 nodes!

Consumed by 15 services!



  

The Untold Story of
Performance in Elasticsearch

FAST

SLOW



  

The Untold Story of
Performance in Elasticsearch

FAST

SLOW

You have a couple of 
constant_score
filters on analyzed fields.



  

The Untold Story of
Performance in Elasticsearch

FAST

SLOW

You have a couple of 
constant_score
filters on analyzed fields.

Add some boost
and should spice.



  

The Untold Story of
Performance in Elasticsearch

FAST

SLOW

You have a couple of 
constant_score
filters on analyzed fields.

Add some boost
and should spice.

Needed a dozen more fields initially weren’t foreseen.



  

The Untold Story of
Performance in Elasticsearch

FAST

SLOW

You have a couple of 
constant_score
filters on analyzed fields.

Add some boost
and should spice.

Needed a dozen more fields initially weren’t foreseen.

Exploded the index size using a 
grenade of 30k synonyms!



  

The Untold Story of
Performance in Elasticsearch

FAST

SLOW

You have a couple of 
constant_score
filters on analyzed fields.

Add some boost
and should spice.

Needed a dozen more fields initially weren’t foreseen.

Needed to group hits by color, size, 
etc. Now you have a collapse.

Exploded the index size using a 
grenade of 30k synonyms!



  

The Untold Story of
Performance in Elasticsearch

FAST

SLOW

You have a couple of 
constant_score
filters on analyzed fields.

Add some boost
and should spice.

Needed a dozen more fields initially weren’t foreseen.

Needed to group hits by color, size, 
etc. Now you have a collapse.

Decided to add 20 aggregations.

Exploded the index size using a 
grenade of 30k synonyms!



  

The Untold Story of
Performance in Elasticsearch

FAST

SLOW

You have a couple of 
constant_score
filters on analyzed fields.

Add some boost
and should spice.

Needed a dozen more fields initially weren’t foreseen.

Needed to group hits by color, size, 
etc. Now you have a collapse.

Decided to add 20 aggregations.

Hey! There aren’t
20 facets here!

Exploded the index size using a 
grenade of 30k synonyms!



  

The Untold Story of
Performance in Elasticsearch

FAST

SLOW

You have a couple of 
constant_score
filters on analyzed fields.

Add some boost
and should spice.

Needed a dozen more fields initially weren’t foreseen.

Needed to group hits by color, size, 
etc. Now you have a collapse.

Decided to add 20 aggregations.

Doubled the amount of aggregations.

Hey! There aren’t
20 facets here!

Exploded the index size using a 
grenade of 30k synonyms!



  

The Untold Story of
Performance in Elasticsearch

FAST

SLOW

You have a couple of 
constant_score
filters on analyzed fields.

Add some boost
and should spice.

Needed a dozen more fields initially weren’t foreseen.

Needed to group hits by color, size, 
etc. Now you have a collapse.

Decided to add 20 aggregations.

Doubled the amount of aggregations.

Just realized you’re serving 5% of calls 
on production behind an A/B test.

Hey! There aren’t
20 facets here!

Exploded the index size using a 
grenade of 30k synonyms!
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The Untold Story of
Caching with Elasticsearch

SIMPLE

COMPLEX

You decided to cache query responses.

Tune eviction this and there.

You have to switch between multiple clusters.

Switching to a cold cluster hurts a lot!

You need to migrate from a legacy system.

Management interfaces:
- which clusters are used for search
- which clusters are getting indexed
- in-progress index operations

How to warm-up?
- replay traffic
- gradually move traffic (session stickiness)

Reproducing production problems
becomes more cumbersome.
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Hail the Legacy!

Just before the season, the collapse became
obvious and team decided to add caching
without tempering much the rest of the system.

A mudball of bash scripts mutating
LB routes, SSH’ing into machines,
executing sudo commands via cron!

Shop Find
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Long live the king!

Queries are routed to both
END and ES via A/B tests.

Retrieve the cluster states,
i.e., active-vs-inactive.

Start-stop replayers.

Empty caches.

Tune, index, and retune.

● All inter-service comm. via REST
● Actions are

● trackable
● observable
● manageable

Shop Find

Shop Find Indexer
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Did it work? (2/2)
(for single product queries)
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Questions?
(Do you still want to have caching?)
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