

Varnishing Search Performance
Changing the (search) engine of a racecar going 300 km/h

Volkan Yazıcı
http://vlkan.com/

Varnishing Search Performance
Changing the (search) engine of a racecar going 300 km/h

Volkan Yazıcı
http://vlkan.com/

SERIOUSLY!

Secret Agenda

I will try to convince you Elasticsearch performance

and caching are indeed difficult subjects. So that I can

justify our complex caching setup.

Who uses search anyway?

Who uses search anyway?

Who uses search anyway?

Metrics for 1 out
of 10 nodes!

Who uses search anyway?

Metrics for 1 out
of 10 nodes!

Consumed by 15 services!

The Untold Story of
Performance in Elasticsearch

FAST

SLOW

The Untold Story of
Performance in Elasticsearch

FAST

SLOW

You have a couple of
constant_score
filters on analyzed fields.

The Untold Story of
Performance in Elasticsearch

FAST

SLOW

You have a couple of
constant_score
filters on analyzed fields.

Add some boost
and should spice.

The Untold Story of
Performance in Elasticsearch

FAST

SLOW

You have a couple of
constant_score
filters on analyzed fields.

Add some boost
and should spice.

Needed a dozen more fields initially weren’t foreseen.

The Untold Story of
Performance in Elasticsearch

FAST

SLOW

You have a couple of
constant_score
filters on analyzed fields.

Add some boost
and should spice.

Needed a dozen more fields initially weren’t foreseen.

Exploded the index size using a
grenade of 30k synonyms!

The Untold Story of
Performance in Elasticsearch

FAST

SLOW

You have a couple of
constant_score
filters on analyzed fields.

Add some boost
and should spice.

Needed a dozen more fields initially weren’t foreseen.

Needed to group hits by color, size,
etc. Now you have a collapse.

Exploded the index size using a
grenade of 30k synonyms!

The Untold Story of
Performance in Elasticsearch

FAST

SLOW

You have a couple of
constant_score
filters on analyzed fields.

Add some boost
and should spice.

Needed a dozen more fields initially weren’t foreseen.

Needed to group hits by color, size,
etc. Now you have a collapse.

Decided to add 20 aggregations.

Exploded the index size using a
grenade of 30k synonyms!

The Untold Story of
Performance in Elasticsearch

FAST

SLOW

You have a couple of
constant_score
filters on analyzed fields.

Add some boost
and should spice.

Needed a dozen more fields initially weren’t foreseen.

Needed to group hits by color, size,
etc. Now you have a collapse.

Decided to add 20 aggregations.

Hey! There aren’t
20 facets here!

Exploded the index size using a
grenade of 30k synonyms!

The Untold Story of
Performance in Elasticsearch

FAST

SLOW

You have a couple of
constant_score
filters on analyzed fields.

Add some boost
and should spice.

Needed a dozen more fields initially weren’t foreseen.

Needed to group hits by color, size,
etc. Now you have a collapse.

Decided to add 20 aggregations.

Doubled the amount of aggregations.

Hey! There aren’t
20 facets here!

Exploded the index size using a
grenade of 30k synonyms!

The Untold Story of
Performance in Elasticsearch

FAST

SLOW

You have a couple of
constant_score
filters on analyzed fields.

Add some boost
and should spice.

Needed a dozen more fields initially weren’t foreseen.

Needed to group hits by color, size,
etc. Now you have a collapse.

Decided to add 20 aggregations.

Doubled the amount of aggregations.

Just realized you’re serving 5% of calls
on production behind an A/B test.

Hey! There aren’t
20 facets here!

Exploded the index size using a
grenade of 30k synonyms!

SLOW QUERY

CACHED

CACHED

The Untold Story of
Caching with Elasticsearch

The Untold Story of
Caching with Elasticsearch

SIMPLE

COMPLEX

The Untold Story of
Caching with Elasticsearch

SIMPLE

COMPLEX

You decided to cache query responses.

The Untold Story of
Caching with Elasticsearch

SIMPLE

COMPLEX

You decided to cache query responses.
Reproducing production problems
becomes more cumbersome.

The Untold Story of
Caching with Elasticsearch

SIMPLE

COMPLEX

You decided to cache query responses.

Tune eviction this and there.
Reproducing production problems
becomes more cumbersome.

The Untold Story of
Caching with Elasticsearch

SIMPLE

COMPLEX

You decided to cache query responses.

Tune eviction this and there.

You have to switch between multiple clusters.

Reproducing production problems
becomes more cumbersome.

The Untold Story of
Caching with Elasticsearch

SIMPLE

COMPLEX

You decided to cache query responses.

Tune eviction this and there.

You have to switch between multiple clusters.

Management interfaces:
- which clusters are used for search
- which clusters are getting indexed
- in-progress index operations

Reproducing production problems
becomes more cumbersome.

The Untold Story of
Caching with Elasticsearch

SIMPLE

COMPLEX

You decided to cache query responses.

Tune eviction this and there.

You have to switch between multiple clusters.

Switching to a cold cluster hurts a lot!

Management interfaces:
- which clusters are used for search
- which clusters are getting indexed
- in-progress index operations

Reproducing production problems
becomes more cumbersome.

The Untold Story of
Caching with Elasticsearch

SIMPLE

COMPLEX

You decided to cache query responses.

Tune eviction this and there.

You have to switch between multiple clusters.

Switching to a cold cluster hurts a lot!

Management interfaces:
- which clusters are used for search
- which clusters are getting indexed
- in-progress index operations

How to warm-up?
- replay traffic
- gradually move traffic (session stickiness)

Reproducing production problems
becomes more cumbersome.

The Untold Story of
Caching with Elasticsearch

SIMPLE

COMPLEX

You decided to cache query responses.

Tune eviction this and there.

You have to switch between multiple clusters.

Switching to a cold cluster hurts a lot!

You need to migrate from a legacy system.

Management interfaces:
- which clusters are used for search
- which clusters are getting indexed
- in-progress index operations

How to warm-up?
- replay traffic
- gradually move traffic (session stickiness)

Reproducing production problems
becomes more cumbersome.

Hail the Legacy!
Shop Find

Hail the Legacy!

Just before the season, the collapse became
obvious and team decided to add caching
without tempering much the rest of the system.

Shop Find

Hail the Legacy!

Just before the season, the collapse became
obvious and team decided to add caching
without tempering much the rest of the system.

A mudball of bash scripts mutating
LB routes, SSH’ing into machines,
executing sudo commands via cron!

Shop Find

Long live the king!
Shop Find

Shop Find Indexer

Long live the king!

Queries are routed to both
END and ES via A/B tests.

Shop Find

Shop Find Indexer

Long live the king!

Queries are routed to both
END and ES via A/B tests.

Retrieve the cluster states,
i.e., active-vs-inactive.

Shop Find

Shop Find Indexer

Long live the king!

Queries are routed to both
END and ES via A/B tests.

Retrieve the cluster states,
i.e., active-vs-inactive.

Start-stop replayers.

Shop Find

Shop Find Indexer

Long live the king!

Queries are routed to both
END and ES via A/B tests.

Retrieve the cluster states,
i.e., active-vs-inactive.

Start-stop replayers.

Empty caches.

Shop Find

Shop Find Indexer

Long live the king!

Queries are routed to both
END and ES via A/B tests.

Retrieve the cluster states,
i.e., active-vs-inactive.

Start-stop replayers.

Empty caches.

Tune, index, and retune.

Shop Find

Shop Find Indexer

Long live the king!

Queries are routed to both
END and ES via A/B tests.

Retrieve the cluster states,
i.e., active-vs-inactive.

Start-stop replayers.

Empty caches.

Tune, index, and retune.

● All inter-service comm. via REST

Shop Find

Shop Find Indexer

Long live the king!

Queries are routed to both
END and ES via A/B tests.

Retrieve the cluster states,
i.e., active-vs-inactive.

Start-stop replayers.

Empty caches.

Tune, index, and retune.

● All inter-service comm. via REST
● Actions are

● trackable
● observable
● manageable

Shop Find

Shop Find Indexer

Did it work? (1/2)
(for generic queries)

Did it work? (1/2)
(for generic queries)

Did it work? (2/2)
(for single product queries)

Did it work? (2/2)
(for single product queries)

Questions?
(Do you still want to have caching?)

	page1 (1)
	page1 (2)
	Slide 3
	page3 (1)
	page3 (2)
	page3 (3)
	page3 (4)
	page4 (1)
	page4 (2)
	page4 (3)
	page4 (4)
	page4 (5)
	page4 (6)
	page4 (7)
	page4 (8)
	page4 (9)
	page4 (10)
	page5 (1)
	page5 (2)
	page6 (1)
	page6 (2)
	page6 (3)
	page6 (4)
	page6 (5)
	page6 (6)
	page6 (7)
	page6 (8)
	page6 (9)
	page6 (10)
	page7 (1)
	page7 (2)
	page7 (3)
	page8 (1)
	page8 (2)
	page8 (3)
	page8 (4)
	page8 (5)
	page8 (6)
	page8 (7)
	page8 (8)
	page9 (1)
	page9 (2)
	page10 (1)
	page10 (2)
	Slide 45

